A Noncommutative Weight-dependent Generalization of the Binomial Theorem

نویسنده

  • MICHAEL J. SCHLOSSER
چکیده

A weight-dependent generalization of the binomial theorem for noncommuting variables is presented. This result extends the well-known binomial theorem for q-commuting variables by a generic weight function depending on two integers. For two special cases of the weight function, in both cases restricting it to depend only on a single integer, the noncommutative binomial theorem involves an expansion of complete symmetric functions, and of elementary symmetric functions, respectively. Another special case concerns the weight function to be a suitably chosen elliptic (i.e., doubly-periodic meromorphic) function, in which case an elliptic generalization of the binomial theorem is obtained. The latter is utilized to quickly recover Frenkel and Turaev’s elliptic hypergeometric 10V9 summation formula, an identity fundamental to the theory of elliptic hypergeometric series. Further specializations yield noncommutative binomial theorems of basic hypergeometric type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted quadrature rules with binomial nodes

In this paper, a new class of a weighted quadrature rule is represented as --------------------------------------------  where  is a weight function,  are interpolation nodes,  are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as   that  and we obtain the explicit expressions of the coefficients  using the q-...

متن کامل

Generalization of Titchmarsh's Theorem for the Dunkl Transform

Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.

متن کامل

Generalization of Titchmarsh's Theorem for the Dunkl transform

Using a generalized spherical mean operator, we obtain the generalizationof Titchmarsh's theorem for the Dunkl transform for functions satisfyingthe Lipschitz condition in L2(Rd;wk), where wk is a weight function invariantunder the action of an associated reection groups.

متن کامل

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$

In this paper‎, ‎using a generalized Dunkl translation operator‎, ‎we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$‎, ‎where $alpha>-frac{1}{2}$.  

متن کامل

Acceptable random variables in non-commutative probability spaces

Acceptable random variables are defined in noncommutative (quantum) probability spaces and some of probability inequalities for these classes  are obtained. These results are a generalization of negatively orthant dependent random variables in probability theory. Furthermore, the obtained results can be used for random matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012